Abstract

Postural control characteristics have been proposed as a predictor of Motion Sickness (MS). However, postural adaptation to sensory environment changes may also be critical for MS susceptibility. In order to address this issue, a postural paradigm was used where accurate orientation information from body sensors could be lost and restored, allowing us to infer sensory re-weighting dynamics from postural oscillation spectra in relation to car-sickness susceptibility. Seventy-one participants were standing on a platform (eyes closed) alternating from static phases (proprioceptive and vestibular sensors providing reliable orientation cues) to sway referenced to the ankle-angle phases (proprioceptive sensors providing unreliable orientation cues). The power spectrum density (PSD) on a 10 s sliding window was computed from the antero-posterior displacement of the center of pressure. Energy ratios (ERs) between the high (0.7-1.3 Hz) and low (0.1-0.7 Hz) frequency bands of these PSDs were computed on key time windows. Results showed no difference between MS and non-MS participants following loss of relevant ankle proprioception. However, the reintroduction of reliable ankle signals led, for the non-MS participants, to an increase of the ER originating from a previously up-weighted vestibular information during the sway-referenced situation. This suggests inter-individual differences in re-weighting dynamics in relation to car-sickness susceptibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.