Abstract

Land use and management intensity can influence provision of ecosystem services (ES). We argue that forest/agroforestry production systems are characterized by relatively higher C:O/C:N and ES value compared to arable production systems. Field investigations on C:N/C:O and 15 ES were determined in three diverse production systems: wheat monoculture (Cwheat), a combined food and energy system (CFE) and a beech forest in Denmark. The C:N/C:O ratios were 194.1/1.68, 94.1/1.57 and 59.5/1.45 for beech forest, CFE and Cwheat, respectively. The economic value of the non-marketed ES was also highest in beech forest (US$ 1089 ha-1 yr-1) followed by CFE (US$ 800 ha-1 yr-1) and Cwheat (US$ 339 ha-1 yr-1). The combined economic value was highest in the CFE (US$ 3143 ha-1 yr-1) as compared to the Cwheat (US$ 2767 ha-1 yr-1) and beech forest (US$ 2365 ha-1 yr-1). We argue that C:N/C:O can be used as a proxy of ES, particularly for the non-marketed ES, such as regulating, supporting and cultural services. These ES play a vital role in the sustainable production of food and energy. Therefore, they should be considered in decision making and developing appropriate policy responses for land use management.

Highlights

  • The fluxes and stoichiometry of elements like carbon (C), oxygen (O) and nitrogen (N) in an ecosystem is dependent on the anthropogenic intervention coupled with other environmental factors like precipitation and climatic gradient [1, 2]

  • The soil C:O ratios were lowest in beech (0.92) and CFEavergae had significantly higher soil C:O ratios compared to conventional wheat (Cwheat) and beech forest soil

  • The root C:O ratio was highest in Cwheat (2.17) whereas aboveground C:O ratios were highest in beech and lowest in Cwheat

Read more

Summary

Introduction

The fluxes and stoichiometry of elements like carbon (C), oxygen (O) and nitrogen (N) in an ecosystem is dependent on the anthropogenic intervention (e.g., land use, management intensity etc.) coupled with other environmental factors like precipitation and climatic gradient [1, 2]. The insights into elemental stoichiometry can unravel ecological processes operating at different levels from field to landscape scale. These relationships influence ecosystem structure, species composition and diversity, ecosystem functions and provision of ecosystem services (ES) [3,4,5,6,7]. ES are the benefits that humans derive from natural (forests) and managed (agriculture) ecosystems [8,9,10].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.