Abstract

To compare the influence of muscle strength of different contraction types and speeds on the bone strength index of tibial diaphysis in people with chronic stroke. Eighty individuals with chronic stroke (age: 62.6 ± 8.0 years; men/women: 46/34; post-stroke duration: 9.0 ± 5.4 years) underwent scanning of the tibia at the 66% site on both sides using peripheral quantitative computed tomography. Each participant was also evaluated for isometric and dynamic (at 60°/s and 120°/s) strength of knee flexors/extensors and ankle dorsiflexors/plantarflexors using an isokinetic dynamometer. For a given contraction type and speed, the strength values of the four muscle groups were summed to yield a composite score. Multiple regression analysis was used to identify the association of the percent side-to-side difference (%SSD) in tibial polar-stress-strain index (p-SSI) with %SSD in muscle strength of different contraction types and speeds. The p-SSI and all muscle strength parameters on the paretic side had lower values than the non-paretic side (p ≤ 0.001). The %SSD in concentric muscle power at angular speed of 60°/s (R2 = 0.317, p = 0.006) and 120°/s (R2 = 0.298, p = 0.020) remained independently associated with that in p-SSI, after controlling for age, sex, body mass index, post-stroke duration, motor impairment, spasticity, and physical activity level. The effect of isometric strength and eccentric muscle power was not significant in multivariate analysis. Concentric muscle power was more predictive of %SSD in p-SSI at the tibial diaphysis than other contraction types and may be an important target for intervention to promote bone health in people with chronic stroke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call