Abstract

Biomechanical studies have shown that anterior cervical fusion construct stiffness and arthrodesis rates vary with different reconstruction techniques; however, the behavior of the adjacent segments in the setting of different procedures is poorly understood. This study was designed to investigate the adjacent-segment biomechanics after 3 different anterior cervical decompression and fusion techniques, including 3-level discectomy and fusion, 2-level corpectomy and fusion, and a corpectomy-discectomy hybrid technique. The authors hypothesized that biomechanical changes at the segments immediately superior and inferior to the multilevel fusion would be inversely proportional to the number of fused bone grafts and that these changes would be related to the type of fusion technique. A previously validated 3D finite element model of an intact C3-T1 segment was used. Three C4-7 fusion models were built from this intact model by varying the number of bone grafts used to span the decompression: a 1-graft model (2-level corpectomy), a 2-graft model (C-5 corpectomy and C6-7 discectomy), and a 3-graft model (3-level discectomy). The corpectomy and discectomy models were also previously validated and compared well with the literature findings. Range of motion, disc stresses, and posterior facet loads at the segments superior (C3-4) and inferior (C7-T1) to the fusion construct were assessed. Motion, disc stresses, and posterior facet loads generally increased at both of the adjacent segments in relation to the intact model. Greater biomechanical changes were noted in the superior C3-4 segment than in the inferior C7-T1 segment. Increasing the number of bone grafts from 1 to 2 and from 2 to 3 was associated with a lower magnitude of biomechanical changes at the adjacent segments. At segments adjacent to the fusion level, biomechanical changes are not limited solely to the discs, but also propagate to the posterior facets. These changes in discs and posterior facets were found to be lower for discectomy than for corpectomy, thereby supporting the current study hypothesis of inverse relationship between the adjacent-segment variations and the number of fused bone grafts. Such changes may go on to influence the likelihood of adjacent-segment degeneration accordingly. Further studies are warranted to identify the causes and true impact of these observed changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.