Abstract
Regulatory evaluations of commercial chemicals in Canada, the United States, the European Union, and other countries aim to identify biodegradation rates of chemicals in natural soils and sediments. However, commonly used biodegradation testing methods are limited in their capacity to determine biodegradation rates under natural environmental conditions. As a result, widely varying biodegradation rates have been reported for many very hydrophobic substances. This variability causes difficulties in regulatory evaluations, potentially leading to chemical misclassification. In the present study, the authors developed a model of the relationship between biodegradation, sorption, and hydrophobicity, and tested the model in experiments that measured the biodegradation rates of a range of di-phthalate esters (DPEs) and mono-phthalate esters (MPEs) in natural sediments. The results indicate that DPEs and MPEs have the inherent capacity to be quickly degraded by microbes in sediments at a common rate, but that DPE biodegradation rates in natural sediments decrease with increasing phthalate ester sorption to sediments. The results show that inherently biodegradable substances that are subject to a high degree of sorption can be expected to exhibit long half-lives in natural sediments. The model provides a potential methodology for assessing biodegradation rates in natural sediments from inherent biodegradation rates measured in screening tests by accounting for chemical sorption. The present study indicates that a reduced rate of biodegradation is due to a reduced fraction of freely dissolved chemical concentration in the interstitial water, and that the environmental significance of sorption-reduced biodegradation rates needs to be viewed in the context of risk in chemical evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.