Abstract

Plant polyphenols have been highlighted not only as chemopreventive, but also as potential anticancer substances. Flavones are a subclass of natural flavonoids reported to have an antioxidant and anticancer activity. The aim of our study was to evaluate antioxidant and anticancer activity of seventeen trihydroxyflavone derivatives, including apigenin (API) and baicalein (BCL). Also, we wanted to find out if there is a correlation between those two effects. Cell growth inhibition testing was carried out using MTT assay in three different human cancer cell lines: lung (A549), breast (MCF-7) and brain epithelial (U87). Antioxidant activity was determined by the DPPH radical scavenging method. Thirteen trihydroxyflavones possessed anticancer activity against at least one tested cancer cell line. They were more active against the MCF-7 cell line, and the lowest activity was determined against the U87 cell line. The majority of compounds inhibited cancer cell growth at EC50 values between 10–50 µM. The most active compound was 3’,4’,5-trihydroxyflavone 7, especially against A549 and MCF-7 cell lines. The correlation between anti-proliferative and antioxidant activity was only moderate, and it was determined for A549 and U87 cancer cell lines. The most important fragment for those two effects is the ortho-dihydroxy group in ring B. Conclusions. Trihydroxyflavones demonstrated anticancer activity. Further and more detailed studies should to be carried out to estimate the structure–activity relationship of these compounds.

Highlights

  • Cancer is one of the major causes of mortality worldwide

  • Our results showed that the ortho-dihydroxy group in ring C is very important for both antioxidant

  • Our results showed that the ortho-dihydroxy group in ring C is very important for both antioxidant and anticancer activity

Read more

Summary

Introduction

Despite tremendous efforts to create effective chemotherapy drugs, there is still a huge toxicity and selectivity issue. The toxicity of modern chemotherapy and cancer cell resistance to anticancer agents leads us to seek new treatments and prevention methods of this insidious disease [1,2]. The importance of plant substances in medicine and pharmacy is well known from ancient times; herbal substances are often used as the basic structure in the development of new anticancer drugs [3]. In the last 20 years, more than 25% of new drug molecules were directly obtained from the plant sources, and another 25% were chemically modified herbal substances [4]. About half of drugs approved from 1994 to 2007 were of natural origin [5]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.