Abstract

Display devices based on new generation of light source have become the mainstream of the market due to the advantages of large color gamut, high brightness, and high resolution. Blue light, as one of the three primary colors, is an indispensable part of the display system. Its parameters, such as wavelength, spectral width, brightness affect the color gamut of the display system from different aspects. Strong blue light can damage the retinal cells of the human eye and affect the biological rhythm. Therefore, it is needed to consider how to reduce the blue light hazard when designing the display system. Display devices, represented by mobile phones and TV are an important part for human-computer interaction. In order to reduce the blue light hazard, anti-blue hazard mode is usually used and this mode will affect the color gamut of display device. To measure the color gamut and blue light hazards in a display system with the blue light protection mode is necessary. We propose a theory of measuring the characteristic points of display devices to obtain the stereoscopic color gamut. Several mainstream mobile phones currently on the market are used as experimental samples to measure the stereoscopic color gamut and blue light hazard value. Based on the results, we propose the measurement standard of the conversion ratio between the color gamut and the blue light hazard to evaluate the quality of the anti-blue hazard mode.

Highlights

  • The blue light hazard is calculated from the white field spectral distribution

  • 图 5 显示设备的光谱功率分布同防蓝光模式强度的关系 Fig.5 The relationship between the spectral power distribution of display devices and the strength of anti-blue hazard mode

  • 根据图 4,我们画出 7 台设备RV,RB,RN随着防蓝光模式变化的曲线,结果 如图 5 所示: 图 6 显示设备的色域,两种蓝光危害比例同防蓝光模式强度的关系 Fig.6 The relationship between the ratio of the color gamut of display devices, the ratio of two kinds of blue light hazards under the strength of anti-blue hazard mode 我们在平面直角坐标系上画出每台显示器的RV —RB 和RV —RN 曲线,它表示 了随着蓝光模式强度增加,两种蓝光危害和色域的减少比例。结果如图 7 所示: 图 7 不同显示设备的RV—RB以及RV—RN曲线

Read more

Summary

Introduction

摘 要 基于新型光源的显示设备以大色域、高亮度、高解析度等优点成为了市 场主流。蓝光,作为三基色之一,是显示系统不可或缺的部分,它的波 长,光谱宽度,亮度等参数影响着显示系统的方方面面。同时,过强的 蓝光会损害人眼的视网膜细胞并影响生物节律。如何减少蓝光危害是设 计显示系统时需要考虑的重要问题。以手机,电视屏幕为代表的显示设 备是人机交互的重要媒介,为了减少其中的蓝光危害,在设备中通常都 设有防蓝光模式。这种模式会影响到显示设备的色域。基于此,测量显 示系统中色域和蓝光危害随着防蓝光模式的变化过程是有必要的。我们 提出了一种测量显示设备特征点获得立体色域的理论。以目前市面上几 种主流手机作为实验样本测量立体色域,结合光谱获得蓝光危害值,提 出色域和蓝光危害的兑换比例这一测量标准,以评估防蓝光模式的质量。 显示设备从黑白显示、彩色显示、数字显示到以激光光源为代表的新型显示 经历了多次更新换代。目前,包括 LCD[1]、LED[2]、OLED[3]、量子点[2,4],激 光[5]等各种光源都在市场占有一席之地。全色,高清,三维是当今显示系统的发 展方向。2012 年,国际电联通信部门(ITU)提出了 Rec.2020[6]作为 Rec.709[7]的 升级版本,提升了其中关于色域,像素数,扫描帧数等方面的要求。 30117.2[8]和 IEC 62471[9]等行业标准均指出,以蓝光为代表的,过强的光辐射会 对身体产生危害。两种标准均对照明系统的辐照度提出了限制。CIE 于 2000 年 发布的《CIE 蓝光光化学和光生物学危害汇编》[10]中将蓝光危害分为两种:视 觉危害和非视觉危害。视觉危害指蓝光照射视网膜对视网膜视锥细胞和视杆细胞 的损伤。它由 1966 年 Noell 针对小鼠视网膜的研究和 1978 年 Ham 针对恒河猴视 网膜的研究所发现,这种损伤主要由 400-500nm 的光产生[11,12]。Wenzel 等人进 一步详细研究了蓝光对视网膜的损害机理[13]。这一损害在波长为 435nm-440nm 达到极大值。非视觉损害指蓝光照射视网膜后影响褪黑素的分泌,Enazi[14], Brainard[15]等人的研究表明,蓝光波长对人褪黑素分泌抑制的曲线呈高斯分布, Baczynska[16,17]认为其中心波长为 488nm,半高全宽(FWHM)为 84nm。图 1 为归一化后的两种危害和波长之间的函数图。

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.