Abstract
Forest soils are commonly limited in nitrogen (N), and the removal of aboveground biomass in harvesting operations can exacerbate the problem. Thus, the soil organisms that facilitate the rate-limiting step in the N cycle, the oxidation of ammonium (NH 4 +), are of special interest in harvested environments. The objective of this study was to investigate the changes in ammonia oxidizing bacteria (AOB) communities that occurred in the years following clear cutting, and link those community shifts to availability of inorganic N forms NH 4 + and nitrate (NO 3 −). Genetic fingerprinting targeting the amoA gene coupled with denaturing gel gradient electrophoresis was carried out over two summers on forest floor (LFH) and mineral (Ae) soils of three similar cutblocks harvested during different years. In- situ NH 4 + and NO 3 − availability was measured over the growing seasons of 2009 and 2010, as well as a suite of physical soil characteristics. Results indicated that the AOB community composition differed in younger vs. older cutblocks, but not by soil horizon. The changes seen in the AOB paralleled the change in N bioavailability across sites, soil horizons, and sampling years, thus indicating that N bioavailability may be directly linked to AOB community composition. This link may provide the basis for the use of AOB as indicators of nutrient availability in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.