Abstract

Laboratory experiments investigated the relationship between oxidation level and hygroscopic properties of secondary organic aerosol (SOA) particles generated via OH radical oxidation in an aerosol flow reactor. The hygroscopic growth factor at 90% RH (HGF90%), the CCN activity (κORG,CCN) and the level of oxidation (atomic O:C ratio) of the SOA particles were measured. Both HGF90% and κORG,CCN increased with O:C; the HGF90% varied linearly with O:C, while κORG,CCN mostly followed a nonlinear trend. An average HGF90% of 1.25 and κORG,CCN of 0.19 were measured for O:C of 0.65, in agreement with results reported for ambient data. The κORG values estimated from the HGF90% (κORG,HGF) were 20 to 50% lower than paired κORG,CCN values for all SOA particles except 1,3,5‐trimethylbenzene (TMB), the least hygroscopic of the SOA systems. Within the limitations of instrumental capabilities, we show that differences in hygroscopic behavior among the investigated SOA systems may correspond to differences in elemental composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call