Abstract

The unknown effects of a receptor's environment on a ligand's conformation presents a difficult challenge in predicting feasible bioactive conformations, particularly if the receptor is ill-defined. The primary hypothesis of this work is that a structure's conformational ensemble in solution presents viable candidates for protein binding. The experimental solution profile can be achieved with the NAMFIS (NMR analysis of molecular flexibility in solution) method, which deconvolutes the average NMR spectrum of small flexible molecules into individual contributing conformations with varying populations. Geldanamycin and radicicol are structurally different macrocycles determined by X-ray crystallography to bind to a common site on the cellular chaperone heat shock protein 90 (Hsp90). Without benefit of a receptor structure, NAMFIS has identified the bioactive conformers of geldanamycin and radicicol in CDCl3 solution with populations of 4% and 21%, respectively. Conversely, docking the set of NAMFIS conformers into the unliganded proteins with GLIDE followed by MM-GBSA scoring reproduces the experimental crystallographic binding poses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.