Abstract

ABSTRACT This study describes the segregation of genes for resistance to the fungus Puccinia triticina in a cross between partially resistant wheat lines L-574-1 and CI 13227 with two and four genes for resistance, respectively. The objectives of this study were to use parental, F(1), F(2), and backcross populations to quantify maternal effects, degree of dominance, and transgressive segregation, and to determine whether CI 13227 and L-574-1 share any resistance genes for long latent period or small uredinia. In two experiments conducted in the greenhouse, the uppermost leaf of adult wheat plants was inoculated prior to heading with P. triticina. On days 6 to 21 after inoculation, the number of uredinia that erupted from the leaf surface was counted and used to calculate the mean latent period (MLP). The length and width of five arbitrarily selected uredinia were measured and used to calculate uredinium area. Midparent values, degree of dominance, and broad-sense heritability were calculated for MLP and uredinium area. For experiment A, MLP values for CI 13227, L-574-1, F(1), and F(2) generations were 12.2, 10.5, 10.2, and 10.6 days, respectively. For experiment B, MLP values for CI 13227, L-574-1, F(1), F(2), backcross to CI 13227, and backcross to L-574-1 were 12.3, 10.0, 10.6, 10.8, 11.1, and 10.0 days, respectively. The inheritance of long latent period was partially recessive, and no maternal effect was present (P = 0.62 to 0.87 for the comparison of means in reciprocal crosses). Broad-sense heritability for MLP ranged from 0.72 to 0.74, and there was transgressive segregation in the F(2) and backcross populations. Uredinia of the F(1) generation were slightly larger than uredinia for CI 13227. The inheritance of uredinium size was partially dominant, and no maternal effect was present (P = 0.5 to 0.63). Broad-sense heritability for uredinium area ranged from 0.36 to 0.73 and transgressive segregation was present in the F(2) and backcross populations. The results for MLP indicate that lines CI 13227 and L-574 likely share one gene for resistance (based on F(1) values) but not two genes (based on the presence of transgressive segregation). CI 13227 and L 574-1 appear to have at least one gene difference for uredinium area. The linear relationship between uredinium area regressed onto MLP was significant (P < 0.001) and r(2) values ranged from 0.14 to 0.26. These results indicate that the resistance in CI 13227 and L-574-1 could be combined to create wheat cultivars with greater partial resistance than that possessed by either parent based on MLP or uredinium size.

Highlights

  • Based on data from reciprocal crosses, there were no maternal effects for latent period or uredinium area (Table 1)

  • Our observed data for parent populations resembled expected data, observed values for the F1 population were considerably higher. We considered this model with genes in L-574-1 having equal effects (i.e., 1.25 days each)

  • Latent period and uredinium area are components of partial resistance that can be measured reliably when they are examined under controlled conditions in the greenhouse

Read more

Summary

Introduction

This study describes the segregation of genes for resistance to the fungus Puccinia triticina in a cross between partially resistant wheat lines L-574-1 and CI 13227 with two and four genes for resistance, respectively. There are several reports on the inheritance of slow leaf-rusting in cereals to various rust pathogens in crosses between (i) susceptible and resistant cultivars and (ii) resistant and resistant cultivars [1,2,3,5,7,8,9,11,13,14,18,20,21,23,24,33] In several of these studies, inheritance of slow rusting was determined by measuring rust development in the field; in others, the inheritance of the components of slow rusting (e.g., latent period) was investigated. Crosses between two resistant parents are necessary for determining whether the parents share common genes and for describing gene action between the two parents

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.