Abstract

How weather affects tick development and behavior and human Lyme disease remains poorly understood. We evaluated relations of temperature and humidity during critical periods for the tick lifecycle with human Lyme disease. We used electronic health records from 479,344 primary care patients in 38 Pennsylvania counties in 2006–2014. Lyme disease cases (n = 9657) were frequency-matched (5:1) by year, age, and sex. Using daily weather data at ~4 km2 resolution, we created cumulative metrics hypothesized to promote (warm and humid) or inhibit (hot and dry) tick development or host-seeking during nymph development (March 1–May 31), nymph activity (May 1–July 30), and prior year larva activity (Aug 1–Sept 30). We estimated odds ratios (ORs) of Lyme disease by quartiles of each weather variable, adjusting for demographic, clinical, and other weather variables. Exposure-response patterns were observed for higher cumulative same-year temperature, humidity, and hot and dry days (nymph-relevant), and prior year hot and dry days (larva-relevant), with same-year hot and dry days showing the strongest association (4th vs. 1st quartile OR = 0.40; 95% confidence interval [CI] = 0.36, 0.43). Changing temperature and humidity could increase or decrease human Lyme disease risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call