Abstract

Let [Formula: see text] with [Formula: see text] be [Formula: see text] upper-triangular matrices with rational entries. In the multiplicative semigroup generated by these matrices, we check if there are relations of the form [Formula: see text] where [Formula: see text] [Formula: see text] and [Formula: see text] We give algorithms to find relations of the previous form. Our results are extensions of some theorems obtained by Charlier and Honkala in [The freeness problem over matrix semigroups and bounded languages, Inf. Comput. 237 (2014) 243–256]. Our paper is at the interface between algebra, number theory and theoretical computer science. While the main results concern decidability and semigroup theory, the methods for obtaining them come from number theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.