Abstract

The two objectives of this chapter are (1) to provide an ordering of sequences of objects so they can be sorted, like individual numbers, and so any finite set of them can be generated in a natural order from the first to the last, and (2) to provide a mechanism for classifying complexity functions by their rates of growth.Relations in general are defined, then equivalence relations, then order relations.Relations on sequences of numbers are given, in particular Lexicographic-Order. Relations on infinite sequences of real numbers (including complexity functions of algorithms) are then covered with Big-Oh, Big-Theta, and Little-Oh notation.KeywordsEquivalence RelationPartial OrderComplexity FunctionOrder RelationMaximal ElementThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.