Abstract

Observations of a solar active region complex and its surroundings are used to establish a quantitative relation between the Ca II K line core intensity and magnetic flux density. The Ca II K line core intensity is transformed to a Ca II H + K line core flux density to facilitate a comparison of solar and stellar data. A new absolute calibration for the Mount Wilson Ca II H + K fluxes for G-type dwarfs is derived. The minimum Ca II K flux, found in the centers of supergranulation cells in quiet regions on the sun, is identical to the minimum flux that is observed for solar-type stars. An expression is presented for the nonlinear trend between the Ca II H + K line core excess flux density and the absolute value of the magnetic flux density. Models that explain the nonlinearity of the mean trend and the large intrinsic scatter about it are discussed. The solar data define a relation that is similar to the relation between stellar hemisphere-average magnetic flux densities and Ca II H + K excess flux densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call