Abstract

Two series of WO(x)/TiO(2) catalysts, containing W surface densities up to 4.4 W atoms/nm(2), were prepared by pore volume impregnation of two different supports, titanium oxyhydroxide (amorphous) or titanium oxide (crystallized, 100% anatase). The influence of W surface density and the nature of the support on the surface structure, development of the acidity, and catalytic performances were examined. The texture and structure of the catalysts were investigated by Brunauer-Emmett-Teller measurements, X-ray diffraction (XRD), and Raman and infrared spectroscopy. The catalytic activity was tested for 2-propanol dehydration and n-hexane isomerization. For catalysts obtained by impregnation of titanium oxide, XRD and Raman results showed that W was present as a surface phase. Infrared spectra indicated an increase in the degree of polymerization of W species with increasing W surface density. CO and lutidine adsorption, followed by infrared spectroscopy, showed an increase in the strength and abundance of Brønsted acid sites (measured after lutidine desorption at 573 K) with the W surface density above a threshold of 1.3 W atoms/nm(2). The development of Brønsted acidity correlated with the evolution of the infrared bands attributed to polymerized W species. A direct relationship was observed between the concentration of Brønsted acid sites and the catalytic activity for 2-propanol dehydration. Catalytic activity, for n-hexane isomerization, appears to be associated with the presence of highly condensed W species. The catalysts synthesized by impregnation of titanium oxyhydroxide exhibited a comparable behavior. Hence, for a given W surface density, the W surface structure, concentration of Brønsted acid sites, and catalytic performances were similar. Thus, no significant effect of the initial form of the support (titanium oxyhydroxide versus titanium oxide; 100% anatase) was evidenced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.