Abstract

We perform a numerical study of the long-range (LR) ferromagnetic Ising model with power law decaying interactions (J∝r{-d-σ}) on both a one-dimensional chain (d=1) and a square lattice (d=2). We use advanced cluster algorithms to avoid the critical slowing down. We first check the validity of the relation connecting the critical behavior of the LR model with parameters (d,σ) to that of a short-range (SR) model in an equivalent dimension D. We then study the critical behavior of the d=2 LR model close to the lower critical σ, uncovering that the spatial correlation function decays with two different power laws: The effect of the subdominant power law is much stronger than finite-size effects and actually makes the estimate of critical exponents very subtle. By including this subdominant power law, the numerical data are consistent with the standard renormalization group (RG) prediction by Sak [Phys. Rev. B 8, 281 (1973)], thus making not necessary (and unlikely, according to Occam's razor) the recent proposal by Picco [arXiv:1207.1018] of having a new set of RG fixed points in addition to the mean-field one and the SR one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.