Abstract

Lignocellulosics pretreatment is intended to dismantle biomass' natural recalcitrance. Chemical and morphological changes of lignocellulosic materials would occur through varying pretreatment processes. In order to figure out why the acid-pretreated and Kraft-cooked bamboo residues showed very different enzymatic digestibility, the surface properties of pretreated bamboo residues were characterized in this work. It was found that analyzed surface properties were considered to be associating with each corresponding enzymatic digestibility of the pretreated samples. The zeta potentials of pretreated bamboo residues have a negative correlation with enzymatic efficiency. Kraft-cooked substrates were found to posse a less hydrophobic nature and demonstrated higher enzymatic conversion than substrates that were dilute sulfuric acid pretreated. The surface accessibility analysis (BET and Direct Red staining) revealed that the higher enzymatic efficiency of Kraft-cooked materials was mostly due to the larger cellulosic surface area than that in acid-pretreated materials. The results re-affirm that different pretreatments create a variety of surface characteristics, leading to the idea that pretreatment and enzymatic hydrolysis can be favorably turned to maximize carbohydrate recovery from bamboo residues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call