Abstract

Analyzing the beat-to-beat cardiovascular variability (e.g., heart-rate variability analysis) provides important information regarding circulatory autonomic control. The present study aimed to use laser Doppler flowmetry (LDF) and beat-to-beat analysis to elucidate changes in the microcirculatory blood flow (MBF) and variations (MBFV) therein induced by local heating stimulation. For each experiment, we applied nonpainful local heating and recorded a 20-min heating effect, which was segmented into four measurements separated by 5 min as M1-M4. DCflux (average LDF flux) was calculated for each pulse, and the coefficient of variance of DCflux (DCCV) was then calculated to evaluate the beat-to-beat MBFV. In the linear regression analysis of the M2-M4 data sequence, the slope between relative changes (compared with M1 values) in DCCV and DCflux, and those between the proceeding DCCV and the subsequent DCflux, were negative (R(2) > 0.40 for all; p < 0.05). This is the first study to reveal a possible time-domain relationship between changes in MBF and MBFV parameters. Our results suggest that MBFV evaluated from the beat-to-beat LDF waveform is useful for monitoring the microcirculatory regulatory activities of arteriolar openings, and might therefore be particularly meaningful when evaluating treatment techniques or drugs aimed at improving microcirculatory perfusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.