Abstract

The recent T2K and MINOS indications for a "large" theta_13 neutrino mixing angle can be accommodated in principle by an infinite number of Yukawa flavour structures in the seesaw model. Without considering any explicit flavour symmetry, there is an instructive exercise one can do: to determine the simplest flavour structures which can account for the data with a minimum number of parameters, simply assuming these parameters to be uncorrelated. This approach points towards a limited number of simple structures which show the minimum complexity a neutrino mass model must generally involve to account for the data. These basic structures essentially lead to only 4 relations between the neutrino observables. We emphasize that 2 of these relations, |sin theta_13|=(tan theta_23/cos delta)*(1-tan theta_12)/(1+tan theta_12) and |sin theta_13| = sin theta_12 R^1/4, with R= Delta m^2_21/Delta m^2_32, have several distinctive properties. First, they hold not only with a minimum number of parameters, but also for complete classes of more general models. Second, any value of theta_13 within the T2K and MINOS ranges can be obtained from these relations by taking into account small perturbations. Third, they turn out to be the pivot relations of models with approximate conservation of lepton number, which allow the seesaw interactions to induce observable flavour violating processes, such as mu -> e gamma and tau -> mu gamma. Finally, in specific cases of this kind, these structures have the rather unique property to allow a full reconstruction of the seesaw Lagrangian from low energy data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call