Abstract

This paper outlines RSR, a relational social recommendation approach applied to a social graph comprised of relational entity profiles. RSR uses information extraction and learning methods to obtain relational facts about persons of interest from the Web, and generates an associative entity-relation social network from their extracted personal profiles. As a case study, we consider the task of peer recommendation at scientific conferences. Given a social graph of scholars, RSR employs graph similarity measures to rank conference participants by their relatedness to a user. Unlike other recommender systems that perform social rankings, RSR provides the user with detailed supporting explanations in the form of relational connecting paths. In a set of user studies, we collected feedbacks from participants onsite of scientific conferences, pertaining to RSR quality of recommendations and explanations. The feedbacks indicate that users appreciate and benefit from RSR explainability features. The feedbacks further indicate on recommendation serendipity using RSR, having it recommend persons of interest who are not apriori known to the user, oftentimes exposing surprising inter-personal associations. Finally, we outline and assess potential gains in recommendation relevance and serendipity using path-based relational learning within RSR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.