Abstract

This paper presents a probabilistic similarity measure for object recognition from large libraries of line-patterns. We commence from a structural pattern representation which uses a nearest neighbour graph to establish the adjacency of line-segments. Associated with each pair of line-segments connected in this way is a vector of Euclidean invariant relative angle and distance ratio attributes. The relational similarity measure uses robust error kernels to compare sets of pairwise attributes on the edges of a nearest neighbour graph. We use the relational similarity measure in a series of recognition experiments which involve a library of over 2500 line-patterns. A sensitivity study reveals that the method is capable of delivering a recognition accuracy of 94%. A comparative study reveals that the method is most effective when either a Gaussian kernel or Huber's robust kernel is used to weight the attribute relations. Moreover, the method consistently outperforms the standard and the quantile Hausdorff distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.