Abstract
Knowledge Graphs (KGs) have gained considerable attention recently from both academia and industry. In fact, incorporating graph technology and the copious of various graph datasets have led the research community to build sophisticated graph analytics tools, which has extended the application of KGs to tackle a plethora of real-life problems in dissimilar domains. Despite the abundance of the currently proliferated generic KGs, there is a vital need to construct domain-specific KGs. Further, quality and credibility should be assimilated in the process of constructing and augmenting KGs, particularly those propagated from mixed-quality resources such as social media data. For example, the amount of the political discourses in social media is overwhelming yet can be hijacked and misused by spammers to spread misinformation and false news. This paper presents a novel credibility domain-based KG Embedding framework. This framework involves capturing a fusion of data related to politics domain and obtained from heterogeneous resources into a formal KG representation depicted by a politics domain ontology. The proposed approach makes use of various knowledge-based repositories to enrich the semantics of the textual contents, thereby facilitating the interoperability of information. The proposed framework also embodies a domain-based social credibility module to ensure data quality and trustworthiness. The utility of the proposed framework is verified by means of experiments conducted on two constructed KGs. The KGs are then embedded in low-dimensional semantically-continuous space using several embedding techniques. The effectiveness of embedding techniques and social credibility module is further demonstrated and substantiated on link prediction, clustering, and visualisation tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.