Abstract

The generative topographic mapping (GTM) has been proposed as a statistical model to represent high-dimensional data by a distribution induced by a sparse lattice of points in a low-dimensional latent space, such that visualization, compression, and data inspection become possible. The formulation in terms of a generative statistical model has the benefit that relevant parameters of the model can be determined automatically based on an expectation maximization scheme. Further, the model offers a large flexibility such as a direct out-of-sample extension and the possibility to obtain different degrees of granularity of the visualization without the need of additional training. Original GTM is restricted to Euclidean data points in a given Euclidean vector space. Often, data are not explicitly embedded in a Euclidean vector space, rather pairwise dissimilarities of data can be computed, i.e. the relations between data points are given rather than the data vectors themselves. We propose a method which extends the GTM to relational data and which allows us to achieve a sparse representation of data characterized by pairwise dissimilarities, in latent space. The method, relational GTM, is demonstrated on several benchmarks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call