Abstract
Binary relations are one of the standard ways to encode, characterise and reason about graphs. Relation algebras provide equational axioms for a large fragment of the calculus of binary relations. Although relations are standard tools in many areas of mathematics and computing, researchers usually fall back to point-wise reasoning when it comes to arguments about paths in a graph. We present a purely algebraic way to specify different kinds of paths in Kleene relation algebras, which are relation algebras equipped with an operation for reflexive transitive closure. We study the relationship between paths with a designated root vertex and paths without such a vertex. Since we stay in first-order logic this development helps with mechanising proofs. To demonstrate the applicability of the algebraic framework we verify the correctness of three basic graph algorithms. All results of this paper are formally verified using the interactive proof assistant Isabelle/HOL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Logical and Algebraic Methods in Programming
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.