Abstract

Here, we demonstrated that starch-capped silver nanoparticles (AgNPST) with a size range of 10⿿15 nm could readily interact with a small protein bovine α-lactalbumin (BLA) through the formation of protein corona. We further observed that such phenomena not only caused structural change of BLA but drastic drop in the bactericidal potential of AgNP. To design a strategy towards minimizing protein adsorption and maximizing the retention of bactericidal potential of AgNP, we developed stable polyethylene glycol (PEG)-capped AgNP (AgNPPEG) that clearly demonstrated reduced conformational changes of protein and retention of substantial bactericidal potential of AgNPPEG, compared to AgNPST. Moreover, AgNPPEG also showed excellent hemocompatibility. A relatively larger protein bovine serum albumin (BSA) and human blood serum solution containing serum proteins were also used in this study to validate our hypotheses. Overall, our study established that protein coated AgNP losses its inherent bactericidal potential substantially; however, when functionalized with a suitable material such as PEG, it could reduce such drop in substantial amount. Moreover, it achieved improved biocompatibility in actual physiological condition that might find a better therapeutic avenue in many bacteria-mediated disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.