Abstract

Abstract Functionally graded (FG) materials owe their advantage over conventional composites to the continuous microstructure that eliminates many problems like delamination and stress jumps. Functionally graded porous structures have the added advantage of significant weight reduction while maintaining comparable strength to the solid precursor. One of the attractive applications of FG porous polymers is impact energy absorption. This is due to their viscoelastic nature that helps in energy dissipation, in addition to their light weight compared to metals and ceramics. In this work, FG porous structures of Acrylonitrile Butadiene Styrene (ABS) were fabricated with thermally activated microspheres. One-dimensional heat flow was introduced across the thickness with different terminal temperatures to induce a thermal gradient. Different compositions and processing conditions were carried out to investigate the relationship between impact energy and microstructure. Impact energy showed stronger correlation to pores’ diameter gradient than to porosity. The fairly strong correlation between diameter gradient, permitted expansion ratio, and porosity indicates the potential to control the microstructure and hence impact energy absorption. Functionally graded porous structures of ABS demonstrated their superiority for impact absorption with strength-to-weight ratio of 46.02 J cm3/g compared to 25.71 J cm3/g for solid ABS. This work provides processing guidelines to fabricate FG porous structures of ABS in relation to impact energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.