Abstract

Non-equilibrium dynamics of the Ising model is a classical stochastic process whereas quantum mechanics has no stochastic elements in the classical sense. Nevertheless, it has been known that there exists a close formal relationship between these two processes. We reformulate this relationship and use it to compare the efficiency of simulated annealing that uses classical stochastic processes and quantum annealing to solve combinatorial optimization problems. It is shown that classical dynamics can be efficiently simulated by quantum- mechanical processes whereas the converse is not necessarily true. This may imply that quantum annealing may be regarded as a more powerful tool than simulated annealing for optimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.