Abstract
Working memory is considered as a cognitive memory buffer for temporarily holding, processing, and manipulating information. Although working memory for verbal and visual information has been studied extensively in the past literature, few studies have systematically investigated how depth information is stored in working memory. Here, we show that the memory performance for detecting changes in stereoscopic depth is low when there is no change in relative depth order, and the performance is reliably better when depth order is changed. Increasing the magnitude of change only improves memory performance when depth order is kept constant. However, if depth order is changed, the performance remains high, even with a small change magnitude. Our findings suggest that relative depth order is a better indicator for working memory performance than absolute metric depth. The memory representation for individual depth is not independent, but inherently relational, revealing a fundamental organizing principle for depth information in the visual system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.