Abstract
The fusion of multi-modal data (e.g., magnetic resonance imaging (MRI) and positron emission tomography (PET)) has been prevalent for accurate identification of Alzheimer's disease (AD) by providing complementary structural and functional information. However, most of the existing methods simply concatenate multi-modal features in the original space and ignore their underlying associations which may provide more discriminative characteristics for AD identification. Meanwhile, how to overcome the overfitting issue caused by high-dimensional multi-modal data remains appealing. To this end, we propose a relation-induced multi-modal shared representation learning method for AD diagnosis. The proposed method integrates representation learning, dimension reduction, and classifier modeling into a unified framework. Specifically, the framework first obtains multi-modal shared representations by learning a bi-directional mapping between original space and shared space. Within this shared space, we utilize several relational regularizers (including feature-feature, feature-label, and sample-sample regularizers) and auxiliary regularizers to encourage learning underlying associations inherent in multi-modal data and alleviate overfitting, respectively. Next, we project the shared representations into the target space for AD diagnosis. To validate the effectiveness of our proposed approach, we conduct extensive experiments on two independent datasets (i.e., ADNI-1 and ADNI-2), and the experimental results demonstrate that our proposed method outperforms several state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.