Abstract

The linear term proportional to $|N-Z|$ in the nuclear symmetry energy (Wigner energy)is obtained in a model that uses isovector pairing on single particle levels from a deformed potential combined with a $\vec T^2$ interaction. The pairing correlations are calculated by numerical diagonalization of the pairing Hamiltonian acting on the six or seven levels nearest the $N=Z$ Fermi surface. The experimental binding energies of nuclei with $N\approx Z$ are well reproduced. The Wigner energy emerges as a consequence of restoring isospin symmetry. We have found the Wigner energy to be insensitive to the presence of moderate isoscalar pair correlations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.