Abstract

ObjectiveCerebral blood flow (CBF) plays a critical role in the maintenance of neuronal integrity, and CBF alterations have been linked to deleterious white matter changes. Several studies report CBF and white matter structural alterations individually. However, whether and how these pathological changes relate to each other remains elusive. By using our cohort of individuals with early-stage schizophrenia, we investigated the relationship between CBF and white matter structure. MethodWe studied 51 early-stage schizophrenia patients and age- and sex-matched healthy controls. We investigated the relationship among tissue structure (assessed with diffusion weighted imaging), perfusion (accessed by pseudo-continuous arterial labeling imaging), and neuropsychological indices (focusing on processing speed). We focused on the corpus callosum, due to its major role in associative functions and directness on revealing the architecture of a major white matter bundle. We performed mediation analysis to identify the possible mechanism underlay the relationship among cognition and white matter integrity and perfusion. ResultsThe CBF and the fractional anisotropy (FA) were inversely correlated in the corpus callosum of early-stage schizophrenia patients. While CBF negatively correlated with processing speed, FA correlated positively with this cognitive measure. These results were not observed in controls. Mediation analysis revealed that the effect of FA on processing speed was mediated via the CBF. ConclusionsWe provide evidence of a relationship between brain perfusion and white matter integrity in the corpus callosum in early-stage schizophrenia. These findings may shed the light on underlying metabolic support for structural changes with cognitive impact in schizophrenia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call