Abstract

In acetabular dysplasia, more vertical orientation of the acetabular component is often used to minimize the superolateral bone grafting. This study was designed to determine the effects of vertical orientation of the cup on the stability and polyethylene wear of the acetabular component in uncemented total hip arthroplasty (THA). Three-dimensional finite element models of the hemipelvis with dysplastic acetabulum were developed. Metal-backed hemispherical cups were placed in the true acetabulum with abduction angles of 35, 45, 55, and 65 degrees. It was found that more vertical orientation of the cup was associated with larger relative motion of the metal shell between the acetabulum and metal shell. Furthermore, tilting and torsional shear stresses in the model of the cup abduction angle of 65 degrees were found to be 1.7 times larger than that in the model with 35 degrees at the bone-metal shell interface. More vertically oriented cups caused larger contact stresses at the articulating surfaces of the polyethylene liners. The results suggest that the abduction angle of the acetabular component significantly influences cup loosening and polyethylene wear in THA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.