Abstract

Recently, our research has focused on the weave mode. This is a representative vibration mode of motorcycles and is important when considering maneuverability and stability. In a method of analyzing the weave mode, a disturbance is applied to the handle bars of the motorcycle during running and then the response waveform of the roll angle and other items at that time is used to perform estimations. However, when the motorcycle is driven at low speeds, the steering operations of the rider have a large effect on the running data and this makes estimation difficult. Therefore, it was assumed that weave mode data can be estimated from slalom running data since this possesses almost the same vibration frequency as the weave mode in low speed range. In this research, a simulation was used to investigate the relationship between the weave mode and slalom running. The results of the investigation confirmed that slalom running at a specified speed around pylons placed apart at a specific interval resulted in the same vibration mode as the weave mode in low speed range. Furthermore, the data obtained from actually performing the slalom running was compared to the simulation results, and the same trends in the steering torque and roll angle, which are vital data when considering maneuverability and stability, were confirmed. Language: en

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.