Abstract

In this study, we have shed some light on the relation between the position of the lower consolute boundary of various nonionic surfactants in water and the structure of the mesoporous silica materials synthesized from these surfactants-based systems. In the first part, the lower consolute boundary was shifted by adding salts. Depending on the features of the phase diagram, we have looked for either a salting out or a salting in effect. Mesoporous materials were prepared from a micellar solution of the investigated surfactants. Results clearly evidenced that the cooperative self-assembly mechanism is not favored if the lower consolute boundary is not shifted toward high temperatures. Moreover, the higher the difference between the phase separation temperature and the temperature at which the silica precursor is added to the surfactant solution, the better the mesopore ordering is. In the second part, this tendency has been confirmed by using a hydrogenated surfactant as additive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call