Abstract

This article investigates the action of effective combustion inhibitors of premixed C/sub 2/F/sub 4/Br/sub 2/ and CC1/sub 4/ mixtures on the flame propagation rate over a polymer surface in an oxidizer counterflow. The cellulose-based polymers (paper, methyl cellulose, cellophane) examined included specimens in the form of films in a frame, polymethyl methacrylate (PMMA), polystyrene in the form of plates 4 mm thick and 20 mm wide on an asbestos substrate, and STD (a copolymer of formaldehyde with trioxane) in the form of cylindrical 10-mm-diameter specimens. The flame propagation rate is related to the total heat flux, which includes the conductive or convective flux and radiation on the polymer surface. It is concluded that when considering the inhibition of diffusion flames it is necessary to take account of the possible effect associated with the change in flame luminance, and not only the chemical effects of the inert dilution of the flame by the inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call