Abstract

It is now generally accepted that the hydrated electron occupies a cavity in water, but the size of the cavity and the arrangements of the solvating water molecules have not been fully characterized. Here, we use the Kirkwood-Buff (KB) approach to examine how the partial molar volume (VM) provides insight into these issues. The KB method relates VM to an integral of the electron-water radial distribution function, a key measure of the hydrated electron structure. We have applied it to three widely used pseudopotentials, and the results show that VM is a sensitive measure of the fidelity of hydrated electron descriptions. Thus, the measured VM places constraints on the hydrated electron structure that are important in developing and evaluating the model descriptions. Importantly, we find that VM does not reflect only the cavity size (and thus should not be used to infer the cavity radius) but is strongly dependent on the extended solvation structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call