Abstract
We investigate how much amount of Greenberger-Horne-Zeilinger (GHZ) entanglement is required in order to prepare a given multipartite state by local operations and classical communication (LOCC).We present a LOCC procedure that asymptotically converts GHZ states into an arbitrary multipartite pure state, whose conversion rate is given by the multipartite discord of the state. This reveals that the GHZ-entanglement cost of preparing a pure state is not higher than the multipartite discord of the state. It also provides an operational interpretation of multipartite discord for pure states, namely, the consumption rate of GHZ entanglement in the devised procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.