Abstract

We discuss the transport of small gas molecules in organic glassy matrices using oxygen diffusion in propylene carbonate as an example. The jumps of a penetrant from one interstitial cavity to another require energy to expand the channel between cavities to the size of the penetrant. It has been established that at temperatures below and slightly above the glass transition temperature, the activation energy of oxygen diffusion, E, is related to the instantaneous shear modulus G∞ of propylene carbonate via the equation E = V × G∞, where V is the temperature-independent parameter that characterizes the volume of the channel. Consequently, the E value is the work necessary for elastic deformation of the surrounding matrix to expand the channel available for oxygen diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call