Abstract
The Kirkwood–Cohansey aquifer in southern New Jersey is an important source of drinking-water supplies, but the availability of the resource is limited in some areas by high concentrations of radium, a potential carcinogen at elevated concentrations. Radium (226Ra plus 228Ra) concentrations from a network of 25 drinking-water wells showed a statistically significant increase over a decadal time scale (p < 0.05), with a median increase of 0.35 picocuries per liter. Increases in Ra are correlated with road-salt application rates, and we hypothesize that the correlation is causal. Geochemical processes associated with road-salt applications that can mobilize Ra into solution include competition by excess sodium for sorption sites and formation of chloride complexes (RaCl+ and RaCl2). The largest increases in Ra were in groundwater with low pH (≤5), which is an indirect surrogate for low cation-sorption capacity. Correlations with other potential anthropogenic causes for the increase in Ra were not observed, further suggesting a road-salt effect. Given the significant increase in Ra concentrations in this drinking-water source, the known carcinogenic risks from Ra, the direct link to road-salt application, and the likelihood for continued increases, additional monitoring is necessary in areas with similar hydrogeologic and geochemical settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.