Abstract

We conducted microlite textural analyses for the 1991–1995 eruptions at Unzen, Japan, in order to clarify the relationship between the discharge rate (exit velocity) and the kinetics of the microlite crystallization processes. The temporal variations in the plagioclase microlite crystallinity and the average size are negatively correlated with the variation in the magma discharge rate. On the other hand, the variation in the microlite number density (MND) exhibits a positive correlation with the discharge rate without a significant time lag. Groundmass microlites contain calcic plagioclase microlite (An 45–65) and pargasite, suggesting that the microlite crystallization occurred at a depth (70–160 MPa) in the region of stability of the pargasite and plagioclase. The MND is determined at a depth (nucleation depth) with a certain effective undercooling rate (d T/d t) that is proportional to the exsolution rate of H 2O from magma (d C H2O/d t). According to the MND water-exsolution rate meter, d C H2O/d t is calculated as 3.5 to 34.6 × 10 − 6 wt.%/s at the final stage of the nucleation depth ( z n: 70–100 MPa). By assuming that H 2O exsolution occurs in equilibrium, the temporal variation in the decompression rate can be associated with the ascent velocity, provided the conduit flow is steady. The calculated ascent velocity of magma at z n (70–100 MPa; 0.8–7.6 cm/s) is higher than the exit velocity of magma (0.1 MPa; 0.2–3.9 mm/s). Using reasonable bulk densities, the difference in the velocities at the nucleation depth and surface results in the cross-section of the conduit (ellipse elongated dykes 2:5) at the nucleation depth (from 3 to 21 m) to be smaller than that at the surface (20 × 50–100 m) according to the mass conservation law along the conduit. The estimated temporal variation in the ascent velocity at z n (70–100 MPa) is positively correlated with the observed discharge rate of magma, except at the final stage of eruptive activity. Furthermore, the variation in the conduit dimension at z n is correlated with the variation in the exit velocity, thereby implying that the observed discharge rate of magma is controlled by the ascent velocity at z n (70–100 MPa) and the conduit dimension. With regard to the final stage of eruptive activity, a decrease in the conduit dimension from 19 to 3 m indicates that the conduit is finally closed due to the termination of the magma supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.