Abstract

Constant current pulses have been applied to single muscle fibers of the barnacle, Balanus nubilus Darwin, with an axial metal electrode. The membrane potential change, which took place over a large part of the muscle fiber, was measured with a similar electrode. Depolarizing pulses, if the voltage was greater than threshold, produced tension. The size of the tension was a function of the magnitude and the duration of the depolarizing pulses. The latency between the onset of depolarization and tension can be only in part attributable to mechanical factors. AC stimulation produced tension, but 5 to 10 seconds were required for the steady-state level of the tension to be reached. Muscles were depolarized in elevated K and studied after the contracture had terminated. If not too depolarized, further depolarization produced tension. Termination of hyperpolarizing pulses also produced tension, which decayed quite slowly. Hyperpolarizing pulses reduced, or abolished, any preexisting tension. Thus, it appears that at certain values of the membrane potential tension is set up, but there is also a slow process of accommodation present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.