Abstract

Soil is composed of different types of particles which are either natural or of anthropogenic origin. Anthropogenic particles are often related to the presence of heavy metals and thus provide information on soil quality. Magnetic parameters can detect the presence of such particles and may be used as a proxy for environmental pollution. This study explores the relationships between magnetic particles and the nematofauna of agricultural soils. Magnetic, pedological, microscopy and nematological analyses were conducted in soils collected from major regions of potato production in Portugal. The magnetic characterisation of soils identified regions with magnetic particles with possible anthropogenic origin. Microscopy analysis revealed the presence of spherical particles dominantly composed of Fe, O and C. A positive and significant relationship was found between saturation isothermal remanent magnetisation (SIRM) and mass-specific susceptibility (χ), confirming the importance the ferrimagnetic fraction to magnetic properties. The nematode communities were composed of nematodes belonging to four trophic groups (bacterial feeding, plant feeders, fungal feeders and omnivores/predators). The relationships between magnetic parameters and the nematodes showed that (1) S-25 has a linear correlation with number of nematodes per kilogram of soil and with plant feeders' trophic group and (2) SIRM correlates with the bacterial feeders trophic group. This study reveals that magnetic proxies may provide means for detecting regions with higher levels of pollution, possibly related to heavy metals. Due to the large background variability found in magnetic parameters, the sampling spacial mesh should to be further refined and the input of magnetic minerals needs to be locally calibrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.