Abstract
In this paper, by considering the concepts of hypersemilattice and superlattice, we prove that any commutative and positive implicative hyper $K$-algebra, is a hypersemilattice. Moreover, we prove that any bounded commutative hyper $K$-algebra with some conditions, is a superlattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Algebraic Hyperstructures and Logical Algebras
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.