Abstract

The vertical gradients of gravity anomaly and gravity disturbance can be related to horizontal first derivatives of deflection of the vertical or second derivatives of geoidal undulations. These are simplified relations of which different variations have found application in satellite altimetry with the implicit assumption that the neglected terms—using remove-restore—are sufficiently small. In this paper, the different simplified relations are rigorously connected and the neglected terms are made explicit. The main neglected terms are a curvilinear term that accounts for the difference between second derivatives in a Cartesian system and on a spherical surface, and a small circle term that stems from the difference between second derivatives on a great and small circle. The neglected terms were compared with the dynamic ocean topography (DOT) and the requirements on the GOCE gravity gradients. In addition, the signal root-mean-square (RMS) of the neglected terms and vertical gravity gradient were compared, and the effect of a remove-restore procedure was studied. These analyses show that both neglected terms have the same order of magnitude as the DOT gradient signal and may be above the GOCE requirements, and should be accounted for when combining altimetry derived and GOCE measured gradients. The signal RMS of both neglected terms is in general small when compared with the signal RMS of the vertical gravity gradient, but they may introduce gradient errors above the spherical approximation error. Remove-restore with gravity field models reduces the errors in the vertical gravity gradient, but it appears that errors above the spherical approximation error cannot be avoided at individual locations. When computing the vertical gradient of gravity anomaly from satellite altimeter data using deflections of the vertical, the small circle term is readily available and can be included. The direct computation of the vertical gradient of gravity disturbance from satellite altimeter data is more difficult than the computation of the vertical gradient of gravity anomaly because in the former case the curvilinear term is needed, which is not readily available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.