Abstract

Whey protein particles have several applications in modulating food structure and for encapsulation, but there is a lack of methods to prepare particles with a very high internal protein content. In this study whey protein particles with high internal protein content were prepared through emulsification and heat gelation of 25% (w/w) whey protein isolate solution at different pH (6.8 or 5.5) and NaCl concentrations (50, 200, or 400 mM). Particles formed at pH 6.8 were spherical, whereas those formed at pH 5.5 were irregular and had a cauliflower-like appearance. Both particles had an average size of few micrometers, and the particles formed at pH 5.5 had higher protein content (∼39% w/v) than the particles formed at pH 6.8 (∼18% w/v). Similarly, particle morphology and protein density were also affected by initial NaCl concentration: particles formed at 50 mM NaCl (pH 6.8) were spherical, whereas particles formed at either 200 mM NaCl (pH 6.7) or 400 mM NaCl (pH 6.6) were irregular and protein density of the particles increased with increasing initial NaCl concentration. Whey protein particles formed at pH 5.5 showed an excellent heat stability: viscosity of the suspensions containing approximately 30% of protein particles formed at pH 5.5 did not show any change after heating at 90 °C for 30 min while the viscosity of suspensions containing protein particles prepared at other conditions increased after heating. In summary, whey protein particles with varying microstructure, shape, internal protein density, and heat stability can be formed by using heat-induced gelation of whey protein isolate at different gelling conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call