Abstract

Calcium activated isometric force was measured in segments of single muscle fibres of the iliofibularis muscle of Xenopus laevis skinned by freeze-drying. A subdivision in five different fibre types was made, based on the location of the fibres inside the muscle, fibre diameter and a quantitative histochemical assay for succinate dehydrogenase activity. The Ca2+ sensitivity was characterized by fitting a Hill curve to the force levels reached at different Ca2+ concentrations. The parameter n of this equation indicates the steepness and pK the midpoint of this force-pCa relation. A considerable variability in the Ca2+ sensitivity characteristics was found between different fibres. The parameter n varied between 1.1 and 4.2 while pK varied between 5.5 and 6.6. The distribution of the data indicates the presence of three groups with different Ca2+ sensitivity; a group of fibres with low Ca2+ sensitivity but with considerable variation of the steepness of the Ca2+ sensitivity curves (type 1 fibres), an intermediate group (type 2, 3 and 4 fibres) with also considerable variation in steepness of the Ca2+ sensitivity curves, in which the lowest values for n are found in type 3 and 4 fibres and a group with high Ca2+ sensitivity and low n containing at least one tonic (type 5) fibre. At sub-saturating Ca2+ concentrations occasionally a transient decrease of the rate of force development was found which resembled the force oscillation reported for some mammalian muscle fibres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call