Abstract

The influence of the firing conditions on the nanoscale structure of the grain boundaries and on the magnetic properties of polycrystalline MnZn-ferrites is investigated, on specimens of nearly identical microstructures. High oxygen partial pressures favor accumulation of impurity ions at the triple points. Under appropriate oxygen pressures homogeneous accumulation of impurities along the grain boundaries may occur, revealing therefore chemically pure grains and low hysteresis losses; simultaneously an increase of the grain boundary resistivity occurs that results to low eddy current losses. Managing the raw material impurity cations towards controlled grain boundary structures leads to the synthesis of MnZn-ferrites with power losses similar to those achieved when high purity raw materials are used together with externally introduced additives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.