Abstract

Zein, a subproduct of the food industry and a protein, possesses limited applications due to its high hydrophobic character. The objective of this research was to investigate the influence of homogenization pressure and cycles on the volumetric mean diameter (D4,3), span values, and Turbiscan Stability Index (TSI) using the response surface methodology for microfluidized emulsions containing zein as a unique stabilizer. Results showed that homogenization pressure seems to be the most influential parameter to obtain enhanced physical stability and droplet size distributions, with the optimum being 20,000 psi. Interestingly, the optimum number of cycles for volumetric diameter, span value, and TSI is not the same. Although a decrease of D4,3 with number of cycles is observed (optimum three cycles), this provokes an increase of span values (optimum one cycle) due to the recoalescence effect. Since physical stability is influenced by D4,3 and span, the minimum for TSI is observed at the middle level of the cycles (2 cycles). This work highlights that not only volumetric diameter, but also span value must be taken into consideration in order to obtain stable zein emulsions. In addition, this study wants to extend the limited knowledge about zein-based emulsions processed with a Microfluidizer device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.