Abstract

Poultry litter (PL) is widely used as fertilizer because of its rich N, P and Ca content. When PL is applied to previously untreated soil, it is a potential contaminant. Composting is an alternative for stabilizing organic and mineral components. This study aimed to elucidate the structural changes and its influence on the solubility of heavy metals in poultry litter during the first 30 d of composting, which is the period when the most intense transformations occur. For this analysis, the transformation dynamics of the organic structures and the availability of mineral elements were studied via spectroscopic characterization, total heavy metal content determination and chemical fractionation at three composting times (0, 15, and 30 d). During composting, the material's aromaticity increased, while its aliphaticity decreased, and the hydrophobicity index increased as the polarity decreased. These results indicate that during the first 30 d, PL composting occurs via transformation of the most labile structures (carbohydrate, peptide and fatty acid fragments), thereby preserving the most stable and least functionalized structures. Composting increased the concentrations of Cu, Cr, Pb and Zn and the transformation of CAlk-O and CAlk-di-O associated with peptides and carbohydrates and favored solubilizing and leaching a water-soluble fraction rich in these compounds. The labile fractions of Fe and the humified organic matter fractions of Cu, Fe, Mn, Zn, and Al increased. The structural changes reduced heavy metal solubility, thus indicating that after 30 d of composting, the heavy metal contamination risk is low.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.